Minkowski Content for Reachable Sets

نویسنده

  • PIERMARCO CANNARSA
چکیده

In 1955, Martin Kneser showed that the Minkowski content of a compact p-rectifiable subset M of Rn is equal to its p-Hausdorff measure: lim t→0,t>0 Ln ` B(M, t) ́ α(n− p) tn−p = H(M). We extend his result to the reachable sets of a linear control system

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-sided Minkowski content for some classes of closed sets and applications to stochastic geometry

We find conditions ensuring the existence of the one-sided Minkowski content for d-dimensional closed sets in R, in connection with regularity properties of their boundaries. Moreover, we provide a class of sets stable under finite unions for which the one-sided Minkowski content exists. It follows, in particular, that finite unions of sets with Lipschitz boundary and a type of sets with positi...

متن کامل

Reachability of Uncertain Linear Systems Using Zonotopes

We present a method for the computation of reachable sets of uncertain linear systems. The main innovation of the method consists in the use of zonotopes for reachable set representation. Zonotopes are special polytopes with several interesting properties : they can be encoded efficiently, they are closed under linear transformations and Minkowski sum. The resulting method has been used to trea...

متن کامل

DyVSoR: dynamic malware detection based on extracting patterns from value sets of registers

To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...

متن کامل

A Note on Measures of Parallel Sets

The r-parallel set to a set A in a Euclidean space consists of all points with distance at most r from A. We clarify the relation between the volume and the surface area of parallel sets and study the asymptotic behaviour of both quantities as r tends to 0. We show, for instance, that in general, the existence of a (suitably rescaled) limit of the surface area implies the existence of the corre...

متن کامل

Fractality and Lapidus zeta functions at infinity

We study fractality of unbounded sets of finite Lebesgue measure at infinity by introducing the notions of Minkowski dimension and content at infinity. We also introduce the Lapidus zeta function at infinity, study its properties and demonstrate its use in analysis of fractal properties of unbounded sets at infinity. AMS subject classifications: 11M41, 28A12, 28A75, 28A80, 28B15, 42B20, 44A05, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008